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multiple reflexions are likely to co-exist or reflect two aspects 
of the internal structure. 

MASLEN: Can you comment on the broad modulation ob- 
servable in the Si curve in addition to the sharp peaks? 

PosT: The specimen referred to had been ground and had 
a fairly substantial mosaic spread, probably mainly in the 
surface layers. Moon & Shull have carried out calculations 
and we have examined two cases. It appears possible to 

explain the widths observed on the basis of those geometrical 
considerations, at least for mosaic crystals. For perfect 
crystals, the situation is of course different. 

WEISS: NOW is probably the time for crystallographers to 
accept, at the beginning of a crystal study, that multiple 
diffraction effects exist, and are important, and to seek to 
satisfy themselves as to their magnitude in the specific case 
they have on hand. One way which would be useful would be 
to look for their effect on space-group forbidden reflexions. 
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The Correction of Measured Structure Factors for Thermal Diffuse Scattering 
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Correction of X-ray intensities for thermal diffuse scattering (TDS) is necessary, though difficult in 
practice. Existing calculations for the TDS correction are reviewed and the hitherto neglected resolu- 
tion function, R(q), of the diffractometer is discussed. It is concluded that overcorrection for inelastic 
scattering results when R(q) is ignored. Computation of accurate corrections requires a knowledge of 
the elastic constants of the material, experimental measurement of R(q) for several reflexions and con- 
siderable machine programming and computing time. 

1. Introduction 

I undertook to give this paper with some reluctance, 
since my periods of interest in accurate measurement 
of structure factors and in lattice dynamics have scarce- 
ly overlapped. Consideration of both at the same time 
has proved to be a useful exercise however, and has 
convinced me that the correction of X-ray intensities 
for thermal scattering is both necessary, and difficult 
in practice. I am therefore advocating a tedious cor- 
rection which I never applied to my own data! 
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Fig. l. Bragg intensity and diffuse intensity determined by the 
method  of Butt & O ' C o n n o r  (1967). Reproduced  from their 
naper. 

The theory of X-ray scattering by lattice vibrations 
has been reviewed elsewhere (Cochran, 1966; Smith, 
1966) and will not be considered in detail. Bragg scat- 
tering is the process in which the X-ray photon is scat- 
tered without change of energy, so that the wavelength 
is unaltered. This scattering is superimposed on a back- 
ground of Compton scattering and possibly fluores- 
cence scattering which we do not consider since the 
intensity varies slowly in reciprocal space and is easily 
subtracted off. Thermal scattering is the process in 
which the incident radiation is scattered inelastically, 
the incident photon exchanging one or more quanta 
of vibrational energy (phonons) with the crystal. The 
change in energy (or wavelength) of the scattered radia- 
tion is only a few parts per million, ordinarily negli- 
gible. It is however enough to distinguish elastically 
and inelastically scattered radiations when the tech- 
nique of M6ssbauer spectroscopy is used (Butt & 
O'Connor,  1967). Fig. 1 shows the elastically and in- 
elastically scattered components from A1 (111 reflex- 
ion) and from KCI (200 reflexion). The intensity of 
thermal scattering is seen to be by no means negligible, 
even for these low-angle reflexions. Fig. 1 can be mis- 
leading: to gain intensity the experiment had to be done 
with poor geometrical resolution and as a result the 
inelastic and elastic components appear equally 
'peaked' at a reciprocal lattice point, which is not at 
all the case. 

Lattice vibrations can be distinguished as acoustic 
modes, for which the (circular) frequency o)~(q) is pro- 
portional to the wave number q for small values of q, 
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and optic modes for which coj(q) remains relatively high 
for all values of q. The index j distinguishes different 
branches of the spectrum such as transverse acoustic, 
longitudinal optic etc. For a general value of q there 
are 3 acoustic modes and 3 n - 3  optic modes, where n 
is the number of atoms per unit cell. Thermal (i.e. in- 
elastic) scattering can be distinguished as one-phonon, 
two-phonon etc. processes according to the number of 
phonons absorbed or emitted. One-phonon scattering 
by acoustic modes is quite strongly peaked at reciprocal 
lattice points, the intensity varying as 1/q z for small q, 
where the wave vector q is also the distance from the 
reciprocal lattice point. This component of the inten- 
sity is roughly proportional to KT/mO~, where K =  
(4re sin 0)/2, T is the absolute temperature, m the mass 
per unit cell and 0D the Debye temperature. Two- 
phonon scattering by acoustic modes is less strongly 
peaked, the intensity varying more slowly than I/q and 
being roughly proportional to (KT/mO~) 2. Higher-order 
processes are generally of negligible intensity, while 
scattering processes involving optic modes do not vary 
rapidly in intensity with q and can be subtracted off 
by a background measurement. Table 1, compiled from 
data kindly provided by Dr T. Smith, shows the (cal- 
culated) relative intensities of different scattering pro- 
cesses for NaF at a few different points in reciprocal 
space. These numbers confirm that normally it will be 
necessary to calculate a correction only for one-phonon 
scattering by acoustic modes. Fortunately the intensity 
of this component, unlike the others, can be calculated 
without a detailed knowledge of the dynamics of the 
crystal; it does however involve the elastic constants. 

2. The correction in an idealized situation 

The considerations of this section apply to a small 
crystal and a four-circle diffractometer, but the situa- 
tion is idealized in that both the crystal and the X-ray 
source are treated as points in relation to the other 
dimensions involved. Symbols which appear frequent- 

ly, other than those already defined in the previous 
section, are as follows: 

K = k - k o  (2.1) 

is the scattering vector, the difference between the wave 
vectors of the scattered and incident radiation. H is a 
vector to a reciprocal lattice point, F(H) the corre- 
sponding structure factor. N is the number of unit cells 
in the crystal, each of volume v. kB is Boltzmann's 
constant. The cross section for Bragg scattering is (see 
for example Cochran, 1966) 

dao (2zc)3N IF(H)IEJ(K-I-I). (2"2) 
d S - -  v 

Here da0 is a measure of the photons scattered per 
second into a solid angle dS in the direction k. The 
J-function satisfies the conditions 

3(K) = 0  for K=~ 0 ,  I J(K)d3K = 1 (2.3) 

and shows that this intensity is concentrated entirely 
at reciprocal lattice points, i.e. the Bragg reflecting 
condition, K = H, must be satisfied. Suppose the detec- 
tor slits subtend (small) horizontal and vertical angles 
I//1 and V2 at the specimen, and the latter is rotated 
through a (small) angle £2 about a vertical axis which 
takes it through the reflecting position with angular 
velocity oo in the recording time r. The 'total count 
recorded' is then 

E0= at, 

that is 

E0 - (2rc)3N!F(H)lZv I I 6 ( K -  n)dvad~tzdt (2-4) 

since dS=dgqd~2. Fig.2 shows the volume swept out 
in reciprocal space, and also that the element of vol- 
ume is 

d3K=(Kdf2) (kd~l) (kdgt2) cos ( '  (2.5) 

Table 1. Theoretical diffuse intensities for NaF at room temperature 

n-phonon intensities, n = 1,2 . . . .  
h k 1 11 12 13 /4+ Total 
4 0.2 0 119.6 6.05 0.36 0.01 126.02 
4 0.4 0 34.13 3.54 0.31 0.02 38.00 
4 0-6 0 18.55 2.70 0.30 0.03 21.57 
4 0.8 0 13.58 2.34 0.29 0.03 16.23 
4 1.0 0 12.13 2.24 0"29 0.03 14.69 
4 1.2 0 12-87 2.34 0.29 0.03 15.53 

6 0.2 0 61.86 7.02 0.93 0.10 69.90 
6 0.4 0 17.68 4.09 0.80 0.13 22.71 
6 0.6 0 9.65 3.10 0.76 0.16 13.67 
6 0.8 0 7.10 2.67 0.73 0.17 10.67 
6 1.0 0 6.39 2.54 0.71 0.18 9.81 
6 1-2 0 6-83 2-64 0.73 0.17 10.37 
6 1.4 0 8.93 3.03 0.77 0-16 12.90 
6 1.6 0 15.76 3.96 0.84 0.15 20.71 
6 1.8 0 53-08 6.73 0.97 0.12 60.96 

Compton 
intensity 

11.87 
11.92 
11.96 
12.02 
12.09 
12.16 

14.42 
14.43 
14.44 
14.45 
14.46 
14.48 
14-50 
14.54 
14.58 

h, k, l are the components of K in units of 2rc/a. 
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Combining equations (2.5) and (2.4), and using k =  
2n/2, K =  (4n sin 0)/2 and co = dt2/dt we get the familiar 
result (James, 1948) 

E0 = N231F(H)12 
vco sin 20 " (2.6) 

The corresponding cross section for one-phonon 
scattering by acoustic modes of small wave vector is, 
to a good approximation 

&q (2n)3IF(H)I 2 
- -  _ _  . . . .  

dS v 

x X [K. ej(q)]2kBT 
qj mco~(q) 6(K + q -  H ) .  (2"7) 

Here ej(q) is a unit vector in the direction of polariza- 
tion of an acoustic mode. As a convenient abbreviation 
we introduce 

J (q)=  Z' [K. ej(q)]ZkBT 
j Oco~(q) (2"8) 

where o=m/v  is the density of the crystal. J(q) gives 
the intensity distribution in the vicinity of a reciprocal 
lattice point H. The total count recorded from this 
scattering process is therefore, by analogy with (2.4), 

El (2n)3[F(H)12 
= v2 l l f J ( q ) 6 ( K + q - H ) d v l d ~  '2dt" 

(2.9) 

where the sum is to be taken over those wave vectors 
which can contribute, namely those which lie inside 
the volume in reciprocal space swept out in the course 
of the measurement, shown in Fig.2. (We shall refer 
to this as the 'range of measurement'). However the 
density of wave vectors in reciprocal space is (Nv)/(2n) 3, 
and we can replace the sum by an integral 

N' I X --+ d3q. (2"11) 

(Clearly d3q and d3K are equal since K + q = H, a con- 
stant.) Thus we finally obtain the basic result 

1 S ~-- (27c)3 d(q)d3q (2"12) 

where J(q) is given by equation (2.8) and the integral 
is over the range of measurement. 

Expression (2.12) could be programmed for numer- 
ical evaluation. J(q) is determined by the elastic con- 
stants, for example for a cubic crystal 0co~(q) and ej(q) 
are determined by the equation (James, 1948) 

(clmq2x + c44(q2y + q2 ) -  Oco2)ex + (Cm2 + C44) 

x (qzqvev + qzqzez) = 0 (2.13) 

and two similar equations in which the indices are 
cyclically permuted. Alternatively expressed, each 
0co~(q) is an eigenvalue and each ey(q) the correspond- 
ing eigenvector of the following matrix, 

c11q2 +C44(q2 +q2)  

(C12 "Jl- Ca4)qvqx 

(elz + c44)qzqx 

(c12 + C44)qxqv 
cxaq2+ 2 2 c44(q x + q z) 

(c12 + c44)q, qv 

(c12 + c44)qzqz ] 

(C12 -[- c44)qvqz J 
c11q2z + 2 2 C44(q x + q y) 

(2.14) 

Comparing equations (2.9) and (2.4) we see that 

E1 1 
- -Eo  - N v  J ( q )  

k 

ko 

(2.10) 

Fig. 2. The 'range of measurement' in reciprocal space for an 
~2-scan. 

Isodiffusion contours, surfaces on which d(q) is con- 
stant, are illustrated by James (1948). They are not 
spherical, even for a crystal such as sodium or an 
alkali halide. A further complication is that the range 
of measurement, over which the integral (2.12) is to 
be evaluated, is not the same for every reciprocal lat- 
tice point. It is therefore not surprising that the tedious 
numerical calculation outlined in this paragraph has 
not so far been made. 

3. Review of existing calculations 

The integral (2.12) has been evaluated analytically by 
Nilsson (1957), making a number of approximations, 
and more exactly by Cooper & Rouse (1968) by a com- 
bination of analytical and numerical methods. The 
major approximation made by these authors is that 
J(q) is isotropic, and can be written J(q). Alternatively 
expressed, it is as if all acoustic modes had the same 
velocity, independent of directions of propagation and 
polarization, so that 

Oco~(q) = cq2 . (3"1) 

Nilsson (1957) evaluated the 'best' value of the elastic 
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constant c in terms of the actual elastic constants of 
a cubic crystal. The relation is not a simple one; how- 
ever if C11=¢12-[-2C44, it reduces to the more obvious 
one, 

3/c= l/c,, + 2/c44 • (3.2) 

With  the approximat ion of a single elastic constant, 
equation (2.8) reduces to 

K2kBT 
J ( q ) =  eq 2 (3"3) 

and therefore 
K2kBT ~ d3q 

(3.4) 
~-- (27~)3C ~ q2 " 

"The integral is still difficult to evaluate because the 
'range of  measurement '  is a parallelepiped. Pryor 
(1966) suggested replacing the parallelepiped by a 
sphere of radius qm, so that 

KEkgTqm 
= 2 n ~ 2 c  - (3"5) 

The volume is determined by equation (2-5), so one 
expects qm to be determined by the condit ion 

( ~ _ ) 3  4n 
(sin 20)f2V1~,2 = 3 q 3 .  (3.6) 

In fact Cooper & Rouse (1968) found that in two in- 
stances the spherical approximat ion gave results in 
good agreement with their exact evaluation of (3.4), 
provided that qm was kept constant at a value corre- 
sponding to about 0--45 ° in equation (3.6). 

The background reading E' obviously includes a 
contribution E~ from the scattering by acoustic modes. 
The corrected reading is 

and we write 

Eo=(E-E')-(E,-EI) (3.7) 

c ( =  - E~ . (3 .8 )  
E0 

~' is also given by equation (2.12), the integral being 
over a range of measurement  which of course does not 
include the reciprocal lattice point. Alternatively, if  the 
background is measured with the crystal stationary at 
the end of the range of £2, for the same recording time, 

<j'> 
c~ ( j )  , (3.9) 

where ( J )  is the average of J(q) over the volume of 
the parallelepiped, and ( J ' )  is the average over the 
area which is one end of the parallelepiped. Pryor 's 
approximat ion enables one to estimate that 

~' ~'½~. (3-10) 

Table 2. Values of o:-~' for KC1 at room temperature 

h k l 0 ° c~-c~"~ c~-~'* 
4 0 0 13"0 0"033 0"036 
6 0 0 19.7 0"079 0"081 
4 4 4 22"9 0"109 0"108 
8 0 0 26"7 0"147 0"146 

10 0 0 34-2 0"227 0"226 
6 6 6 35"7 0"244 0"244 

t Cooper & Rouse (1968). 
* Pryor (1966). 

Table 2, column 3, shows the values of c~-~' calcu- 
lated by Cooper & Rouse (1968) for KCI at 20°C, 
with (2=2.5  °, ~1=1]/2=1"5 °. Column 4 shows the 
results of the spherical approximation,  with qm fixed 
at a value which makes the figures agree for the 666 
reflexion. These results confirm Nilsson's (1957) con- 
clusion that a-c( is nearly proport ional  to sin20. It 
follows that the result of not applying the correction 
is to deduce too small a value of B in the expression 
for the Debye-Wal ler  factor, 

[ s in 0 ~ 2 
F = F o e x p [ - B \  2 ! ] .  (3.11) 

For KCI, the value of B deduced originally was 1.15 
A. -2, correction of the measurements  for thermal scat- 
tering raised this to 1.31 ~-2. 

so  ~' s ,  ~ 

(a) (b) (c) 

Fig.3. (a) The effect of mosaic spread is to make the resolution function finite on a disc perpendicular to K. (b) The effect of 
wavelength spread is to extend the resolution function along a line parallel to K. (c) The effect of the finite size of the source 
is to make the resolution function finite on a disc perpendicular to the plane of the diagram and inclined to K at an 
angle 0. S is a section of the reflecting sphere. 
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4. The resolution function 

The approximation that J(q) is isotropic may not be 
the most serious approximation made in the work 
described in § 3. In practice the correct expression for 
c~ is not equation (2.12), but the same expression with 
J(q) replaced by JR(q), where 

1 l JR(q)-- (270 3 R(q ' )J(q-q ' )d3q ' (4"1) 

R(q) is the resolution function. (See for example Als- 
Nielsen & Dietrich, 1967). It satisfies the normalizing 
condition 

1 
l R(q)daq= 1 (4-2) (2/Z) 3 

and is itself the result of convoluting at least four 
separate functions. These arise from the effects of 

X 
Fig.4. Schematic representation of the intensity distribution 

when filtered radiation is used. 

Fig. 5. The 'range of measurement'  in reciprocal space for 
an ~-20 scan. 

mosaic spread, of wavelength spread, of finite source 
dimensions and of finite specimen dimensions. Each 
is considered in turn with the other three absent. 

The effect of mosaic spread is to make R(q) finite 
in a plane perpendicular to K, with a distribution de- 
pending on the distribution of misorientations which 
constitutes the mosaic spread. The width of R(q) is 
proportional to K, see Fig. 3(a). This effect will usually 
be relatively unimportant, the height of the spots on 
the zero layer of a single-crystal photograph does not 
increase noticeably with increasing 20, whatever the 
orientation of the crystal. 

The incident radiation will usually have Kel and K~2 
wavelength components, and a proportion of white 
radiation with a sharp cut-off on the low wavelength 
side (Fig.4). The resolution function is finite on a 
straight line parallel to K, with R(q) proportional to 
I(A2), where q =  KA2/2 [Fig. 3(b)]. The gradual separa- 
tion of R(q) into el and cq components may or may 
not be important, depending on the characteristic ra- 
diation used and the range of 20. Since the intensity 
of white radiation will usually vary almost linearly with 
A2, a satisfactory correction for white radiation can 
be made experimentally as follows. Counts are recorded 
using an £2-20  scan (detector moving with angular 
velocity 203). The 'range of measurement' is then the 
parallelepiped shown in Fig. 5. Taking the background 
as the average of that at the two extremities of the 
range, results in the white radiation being subtracted 
out. This method breaks down when the dispersion is 
small, so that the background position on the low 
angle side is on the wrong side of the absorption edge, 
or so close to it that the intensity is reduced by the 
geometrical contributions to the resolution function. 
In this situation it may be possible to make a correc- 
tion based on the background reading on the high- 
angle side only, but further consideration of the cor- 
rection for white radiation lies outside the scope of 
this paper. We may note however that any correction 
computed from I(A2), ignoring the geometrical con- 
tributions to the resolution function, will be inadequate 
since these smear out the idealized distribution shown 
schematically in Fig. 4. 

Next let us suppose the specimen remains a point, 
but the X-ray source is a uniform rectangle subtending 
horizontal and vertical angles)q andj~ at the specimen. 
The effect in reciprocal space is to make R(q) a uniform 
rectangular disc of height kJ~ and width k fl inclined 
at an angle 0 to the vector g [see Fig. 3(c)]. (Note that 
in this situation the angular velocity of the reflected 
beam is 03.) 

With the X-rays originating from a point, the effect 
of having a vertical needle-shaped specimen subtending 
an angle s2 at th.e source, is to make R(q) a vertical 
line of length ks2. One can say little beyond this, be- 
cause of absorption in a specimen with extension in 
a horizontal direction. Evidently R(q) will not then be 
centrosymmetric. In the absence of absorption, the 
width of the reflected beam decreases with increasing 
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20. This focusing effect is quite noticeable on single- 
crystal photographs.  

Clearly when these effects operate simultaneously, 
as they do in practice, one can only say that  R(q) will 
have vertical extension ~ k(f2 + s2), and a horizontal  
section through it might  be as shown schematically in 
Fig. 6. When the specimen is a sphere, R(q) will vary 
systematically with 20 and while it is probably im- 
practicable to compute it, it can be measured for a 
few reflexions covering the range of 20 used. This could 
be done for a particular reflexion by taking a series of 
perhaps ten photographs,  with the films at the detector 
slits, and the specimen stationary in ten successive 
settings for £2. A photometer  trace of each film is then 
a vertical section through R(q) in a nearly planar  seg- 
ment  of the reflecting sphere. This method assumes that  
Bragg intensity in characteristic radiation can be dis- 
t inguished from thermal  scattering and white radiation 
on a 'still '  photograph with sufficient accuracy to give 
R(q) for the Bragg peak, which is what we require. 

JAMES, R. W. (1948). The Optical Principles of the Diffrac- 
tion of X-rays. London: Bell. 

NILSSON, N. (1957). Ark. Fys. 12, 247. 
PRYOR, A. W. (1966). Acta Cryst. 20, 138. 
SKEL'rON, E. F. & KATZ, J. L. (1968). Acta Cryst. In the press. 
SMITH, T. (1966). Phonons in Perfect Lattices and in Lattices 

with Point Imperfections. Ed. R. W. H. STEVENSON. p. 161. 
Edinburgh: Oliver & Boyd. 

DISCUSSION 

WILLIS: There are 3 elastic constants for a cubic crystal, 
but 21 for a triclinic one. How much of a problem is this? 

COCHRAN: The phonon frequencies and eigenvectors will 
still be determined from a 3 x 3 matrix, but the matrix ele- 
ments will depend on the elastic constants in a more com- 
plicated way than for a cubic crystal. Measurement of the 
elastic constants presents something of problem; in prin- 
ciple they can be deduced from X-ray measurements, in 
practice ultrasonic methods have given more accurate re- 
sults. Brillouin scattering can now also be used. 

5. Discussion 

A correction which can be as large as 25% should 
not be ignored, and the correction will be largest for 
materials with relatively low elastic constants, such as 
molecular  crystals. It is some comfort that ct-ct' is 
likely to vary systematically with sin 0 so that  failure 
to make a correction can be largely ' taken up' in the 
Debye-Wal le r  factor. The extent to which this remains 
true for a material  as anisotropic as most molecular  
crystals are in their elastic properties has not been in- 
vestigated. It seems likely that when R(q) is ignored 
in calculating e-c~', a considerable over-correction re- 
sults. The effect of  R(q) is to smear out each fi-function, 
over a region not much  smaller than  the volume which 
we have called the range of measurement.  This must  
have the effect of  making  ct' and e more nearly equal. 
Computa t ion  of accurate corrections requires a knowl- 
edge of the elastic constants, experimental measure- 
ment  of  R(q) for several reflexions and considerable 
machine  programming and computing time. It might  
be easier to cool the crystal to 4°K! 

I am grateful to Dr  Cooper for a preprint  and for 
helpful discussions, and to Dr  Smith for supplying the 
data given in Table 1. 
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MASLEN: HOW important is the contribution of internal 
modes likely to be to the X-ray scattering? 

COCHRAN : Internal modes are a special case of optic modes. 
Their contribution will be rather accurately subtracted by 
making a background measurement, i.e. they contribute 
equally to ct and to ~'. 

MILLEDGE: One can calculate a difference Fourier between 
a molecule at rest and the molecule in vibration. How help- 
ful is this in correcting for TDS? 

COCHRAN: Not very, since, as ordinarily done, it treats the 
molecules as vibrating independently and therefore does 
not give the contribution of acoustic modes. 

I 

s 

S' 

Fig.6. An estimate of the appearance of a horizontal section 
through the resolution function in a particular instance, 
taking into account the effects mentioned in the text, except 
for white radiation. In the absence of these effects the func- 
tion would contract to a &function at the point K. 
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KATZ : We have made corrections for TDS by calculation of 
the intensity at up to 60000 points in the parallelepiped of 
reciprocal space which represents the range of measurement. 
The effect of replacing the parallelepiped by a sphere, and 
of Nilsson's approximation of taking the slit height to be 
infinite, was investigated. The latter can lead to errors of 
30%. 

COCnRAN : Yes, I don't think that anyone will want to make 
that particular approximation. 

ROUSE & COOPER: The assumption of isotropy made in the 
original Cooper-Rouse treatment gives a good approxima- 
tion to the TDS correction for a cubic crystal. This is be- 
cause the TDS peaks at the Bragg reciprocal lattice point 
and therefore a large proportion of the TDS intensity is 
included in the inscribed sphere contained within the volume 
of integration and centred on this point. The contribution 
from the remaining volume will give rise to an anisotropic 
contribution to the TDS intensity, since it depends on the 
direction of the scattering vector as well as its magnitude. 
However, this anisotropy will, in general, be small except 
at large scattering angles when the inscribed sphere be- 
comes a small fraction of the volume of integration. 

We have now extended our treatment* to crystals of any 
symmetry, from cubic to triclinic, retaining the dependence 
of the TDS intensity on direction. Although the expressions 
are easy to formulate, they are extremely difficult to evalu- 
ate, because they involve the numerical integration of a 
triple integral which becomes singular within the range of 
integration. When this problem is overcome we shall be 
able to compute the correction parameter ~ for any cry- 
stal for which the appropriate elastic constants are known. 

A detailed consideration of instrumental resolution is 
extremely complex and we would agree with Professor 
Cochran that the only really satisfactory way of taking this 
into account is to measure it experimentally. 

KA'rZ: A correction procedure has been developed by 
Dr Earl F.Skelton and myself (Skelton & Katz, 1968) to 
account for first order thermal diffuse scattering (TDS) con- 
tributions to integrated Bragg intensity measurements. It 
is believed that this correction is applicable for an arbitrary 

* Cooper, M.J., Rouse, K.D. & Willis, B.T.M. To be 
published. 

type of integrated intensity scan and that it can be applied 
to a monatomic crystal of any symmetry. In developing 
the final expressions, several approximations were neces- 
sary: Perhaps the two most important of these are (1) the 
high temperature approximation and (2) the mean velocity 
approximation. 

In the high temperature approximation, it is assumed 
that the average energy of a normal mode of vibration can 
be represented by kT, where k is Boltzmann's constant and 
T is the absolute temperature of the crystal. Although this 
condition is fulfilled in general when T is in excess of the 
Debye temperature (O), for the low frequency modes, which 
contribute to the TDS in the immediate vicinity of a Bragg 
reflection, this approximation can be applied even for cases 
when T< O. 

In the mean velocity approximation it is assumed that, 
for the absolute value of each lattice wave considered (Igl), 
all directions of propagation occur. It is presumed that the 
error introduced by this approximation will be minimized 
by the Igl-2-term which appears in the first order TDS func- 
tion. 

In order to assay the size of the errors generated by these 
two approximations, a typical integrated intensity measure- 
ment was considered for the 511 reflection of Cu. The cal- 
culation of the TDS/Bragg scattering ratio was first per- 
formed by summing over a grid of 68920 points super- 
imposed over the appropriate volume in reciprocal space; 
the result was 0.038195. Then the high temperature ap- 
proximation was introduced and the calculation repeated; 
the result was 0.038180. Finally, the expressions were sim- 
plified by introduction of the mean velocity approximation; 
the result using the modified expressions was 0.0399. For 
this particular situation then, the high temperature approx- 
imation caused an error of less than 0.04% and the mean 
velocity approximation resulted in an error of less than 5%. 
These errors seem quite modest in consideration of the labor 
saved through their application, e.g., the first calculation 
took almost 20 minutes on a C.D.C.-3800, whereas the last 
computation was performed in less than 30 seconds. 

Note added by 14/. Cochran 
A recent paper which I would have mentioned had I 

~ e n  aware of it in time is that by S. G6ttlicher (1968). Acta 
Cryst. B24, 122. G/Sttlicher has shown that a correction for 
TDS which avoids some of the approximations made 
hitherto still has the effect of changing only the Debye- 
Waller factor, for sodium chloride. 


